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The simple 'weighted sum formula' has been studied as regards its applicability to phase refinements. 
These studies show that proper weighting of the phase relations significantly improves the phase esti- 
mates from phase-sum formulae. The evaluation of weights used in the 'variance-weighted sum formula' 
is discussed, together with the problem of the 2re ambiguity. A simple procedure for selecting efficient 
basis sets is also given. The procedures described have been programmed and used to solve twelve un- 
known structures. Applications to somewhat complicated cases are described. 

Introduction 

The investigations of inter alios Sayre (1952), Cochran 
(1952), Hauptman & Karle (1953) and Hughes (1953) 
show that the sum 

~o(h) + q~(- k) + q~(k- h) ,  (l) 

where ~o(h) is the phase of the structure factor F(h), is 
distributed about zero (modulo 2n). Studies by inter 
alios Cochran (1955) and Karle & Hauptman (1956) 
have shown (cf. Karle & Karle, 1966) that given m 
sums tp( -k , )+~0(kr -h)  ( r=  1 , 2 , . . . , m )  and the corres- 
ponding normalized structure-factor values IE ( -k , ) l  
and IE(k , -h ) l  ( r=  1 ,2 , . . . ,m) ,  the maximum of the 
probability distribution of the sums approximately 
satisfies 

m 

I E ( - k , )  • E ( k , - h ) l .  sin [~0(h) 
r = l  

+ ¢ ( - k , )  +q~(k,-h)] = 0 .  (2) 

Equation (2) becomes, by rearrangement and use of 
Friedel's law" 

m 

IE(k,)- E(h - -k , ) l .  sin [q~(k,) + ~0(h-k,)] 
tan tp(h) = r= l . . . . . . . .  

IE(k,) • E ( h - k , ) l  • cos [~0(k,) + ~0(h- k,)] ' 
r = l  

(3) 
the ' tangent formula'  (Karle & Hauptman, 1956). 

On the other hand, expansion of the sine function 
of (2) as a Taylor series (Karle & K,trle, 1966), with 
neglect of all terms except the first, yields 

~, ]E(k,). E ( h - k , ) l  [~0(k,)+~0(h-k,)] 
q~(h) = r=l . . . . . . . . . . . . . .  , (4) 

IE(k,)" EO~--k,)[ 
r = l  

the 'weighted sum formula' (Karle & Karle, 1966). In 
applying this formula one must somehow deal with 

the 2n ambiguity of each contributing phase sum, 
~o(k,) + ~p(h- k,). 

An expression given by Karle & Karle (1966) for the 
variance of phase sums, ~p(h)- ~0(k)- ~0(h-k), has been 
tabulated by Germain, Main & Woolfson (1970) for 
the variance, V(h, k), as a function of K(h, k) = 2a3af 3/z 

N 

IE(h) • E(k)- E ( h - k ) l .  Here a , = ~  Z~, where N is the 
j = l  

number of atoms in the unit cell and Zj  the atomic 
number of the j th  atom. V(h,k) as a function of 
K(h,k), is given in Table 1. 

Table 1. Compar&on of  the theoretically estimated var- 
iances for single relations with the approximations 

1/~c and 1/(K-0.7) 

x Variance in (radian)2 I/x 1/(x-0"7) 
1.0 1"604 1.000 3"333 
1-5 1"091 0.667 1"250 
2.0 0.764 0.500 0.769 
2.5 0.563 0.400 0.556 
3"0 0"437 0.333 0"435 
3"5 0.354 0.286 0.357 
4"0 0.298 0.250 0"303 
5.0 0.227 0-200 0.232 
6.0 0.184 0-167 0-188 
8.0 0.134 0.125 0.136 

10-0 0"i06 0.100 0-107 
14-0 0-074 0.071 0-075 
20-0 0.051 0-050 0.052 

As a rule most of the 'strongest' of  the m contributors 
~0(k,) + ~p(h-k,) to the phase ~0(h) are clustered within 
one quadrant  of the phase-circle. For  this reason it 
seems reasonable to determine the half-region of the 
phase-circle which contains the maximum number of 
contributors and to evaluate the value of ~0(h) only from 
these indications while considering the remaining indica- 
tions as contradictions. Thus, it should be possible to re- 
cognize most of the inconsistencies among the con- 
tributors and also to take account of them in a proper 
way when determining ~0(h). An analysis of the distri- 
bution of the phase contributors is obviously easier 
with a linear phase-determining formula than with a 
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non-linear phase-determining formula if only contribu- 
tors within one half of the phase-circle are accepted. 
Furthermore, linear formulae provide simple relations 
to be used to calculate proper weights based on the 
estimated variances for the individual contributors. 
When using a more elaborate weighting with the tan- 
gent formula, viz. the 'weighted tangent formula', the 
weights applied are usually more or less empirical (cf 
Germain, Main & Woolfson, 1970). Because of the 
fairly simple calculations that are needed with linear for- 
mulae, one can decrease significantly the computer 
time (and size) used. Thus, several computational as- 
pects speak in favour of using a simple weighted linear 
phase-sum formula for computerized phase deter- 
mination. 

Description of the formulae used 

In the computerized procedure for phase determination 
described in this paper, formulae related to (4) are 
used exclusively. Assume that m pairs ~ ( - k , ) +  
q~(k,-h) (r= 1,2 , . . . ,m)  are given together with the 
corresponding normalized structure-factor magnitudes 
IE(h)l, IE(-k,) l  and IE(k,-h)l .  

If, for each individual relation ¢(h) + q~(- k,) + q~(k, 
- h ) = 0 ,  an individual weight w(h,k,) is used, the 
weighted average value of q~(h) is given by 

m 

w(h,k,) [~0(kr) + ~ (h -  k,) ] 
q~(h) = '--=-~ . . . . . . . . . . . . . . .  . (5) 

n l  

Z w(h, k,) 
r=l 

A suitable weight would be 1/V(h,k,), the inverse of 
the variance of each phase relation used. As shown in 
Table 1, V(h,k,) is roughly proportional to the inverse 
of x(h,k,) for large x values. If this approximation is 
substituted in (5), one immediately obtains (4). Thus, 
formula (4) can be interpreted not only as a rough 
first-order approximation to the tangent formula (3), 
but also as an approximation for solving the system 
of weighted linear phase relations given by (1). As seen 
from Table 1, a fundamental disadvantage of using 
the approximation V(h,k)_ 1/ic(h,k), is that the vari- 
ances of 'weaker' relations, those with smaller x values, 
will be underestimated as compared with those of the 
'stronger' ones. This effect, quite in opposition to the 
principles usually adopted for proper weighting, is 
already appreciable at x = 4 and increases rapidly with 
decreasing to. Since K is less than 4 for a large fraction 
of the relations used in typical phase determinations, 
a better approximation for estimating the variances 
used for calculating the weights in formula (5) is 
clearly desirable. 

The approximation V(h,k) ~ 1/[x(h,k)- 0.7] can be 
used to estimate the variances with good precision 
(relative errors below 3% when compared to the 
theoretically calculated values) for ~¢ larger than about 
2, (Table 1), and has the further advantage of over- 
estimating the variances of relations with smaller x's. 

This approximation does not serve well to estimate the 
variances of relations with extremely small ~:'s; in the 
structures so far investigated using the procedure des- 
cribed in this paper, the lower limit of the K's of the 
relations used has been in the range 1.0 to 1.8. Use 
of the approximation to estimate w(h,k)=l /V(h,k)  
leads to a modification of formula (4): 

[~c(h, k,) - 0. 7] [c#(k,) + q~(h- k,)] 
q~(h) = ~- ! for K's > 1 

[Jc(h, k , ) -  0.71 
r = !  

(6) 

with weighting in much better accord with the rigorous 
estimates of variance. 

The contributors ~0(k,)+~0(h-k,) to a phase ~0(h) 
are usually not known exactly, but have been deter- 
mined with some estimate of their variances, v(k,)and 
v ( h - L ) .  These may be taken into account in the cal- 
culation of the phase ~0(h) by modifications of the 
phase-determining formulae, which are fortunately 
simple for linear relations such as (5). The variance of 
each estimate of q~(h) is no longer given by V(h,k,), 
but by V(h, L) + v(k,) + v (h-  L). Thus, the individual 
weights w(h, k,) to be used in (5) are 

w(h,k,)= I/[V(h,k,)+v(k,)+v(h-k,)]  . (7) 

It is prudent to overestimate the variance v(h) of ~p(h) 
when the m contributors, ~p(k,)+(p(h-k,) ( r=  1 ,2 , . . . ,  
m), have large inconsistencies, thus reducing the pro- 
pagation of errors during the phase determining pro- 
cess. A modified 'variance', v(h), has accordingly been 
calculated as 

w(h,k,)" A~ 
(h) ,=l V = . . . . . . . . .  

m 

(p -11  ~ w(h,k,) 
r = l  

(8) 

where A, = ~0(h)- ~0(k,)- ~0(h-k,) is calculated to be in 
the range 0 to re, and where p is the number of contri- 
butors having A less than g/2. 

If there is only one contributor, the variance of q~(h) 
is calculated as V(h, kl) + v(kl) + v (h-  k0. 

The procedure adopted for evaluating ~p(h) from the 
m contributors (p(k,)+~p(h-k,) is not rigorously that 
given by (5). Inspection of the phase distribution of the 
contributors in a real case shows that with only a few 
exceptions these are usually clustered within a phase 
range of n radians. The exceptions are considered as 
contradictions and the summations to be done in 
formula (5) are performed only over the p contributors 
having A's less than n/2. These p contributors are ex- 
tracted from the m by an iterative calculation of ~0(h). 
The first value of ~0(h) is calculated by (5) using all the 
m contributors, and the corresponding A,'s are calcul- 
ated. The largest A is examined and if its value is larger 
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than re/2, a second value of ~o(h) is calculated by (5), 
without the corresponding contributor. All the re- 
maining ( m - 1 ) A ' s  are recalculated and examined. 
Such iterative calculations of successive new values of 
~p(h) are performed n times until either all the p = m - n  
remaining A's are less than zc/2, or n equals m/2. How- 
ever, as stated above, all the m contributors are used 
to calculate the estimated variance v(h) of the ~0(h) 
value finally obtained. If the phase has a value restric- 
ted by space group symmetry, the nearest allowed value 
is assigned to ~0(h) before the calculation of its variance. 

Thus, the formula used for phasing can be written as 

w(h, k~)[(p(k.O + (,o(h- k~)] 
~(h)= s - - I  

w(h,k~) 
s : l  

(9) 

where the contributors ~p(k~)+ ~0(h- k~) ( s=  1 ,2 , . . .  ,p), 
a subset of all the m contributors, are chosen so that 
m / 2 < p < m ,  where p is the maximum number of 
contributors having A's less than n/2. 

The problem of the 2n ambiguity 

Application of linear phase relations such as formulae 
(4) or (5) has one disadvantage as compared with e.g. 
the tangent formula (3), viz. the 2re ambiguity inherent 
in the periodicity of the phase sums. Karle & Karle 
(1966) have shown one way out of this dilemma: 
another way, to be used with formula (9), will be des- 
cribed here. Suppose that there are m contributors, 
normalized (by adding or subtracting 2z 0 so that 
- rc < ~0(k,) + ~0(h- k,) < rE, with the weights w(h,k,) (r = 
1,2, . . . ,m).  The quantity ~(h) calculated as 

w(h,k,)lq~(k,) + ~o(h- k,)[ 
ce(h) = ,=I - (10) 

w(h,k,) 
t= l  

can then be used to test whether the 2z~ ambiguity 
needs to be taken into consideration or not. If~(h) < re/2 
formula (9) can be used directly. If ~(h) > ze/2, a phase 
shift of rc is subtracted from all the m contributors and 
the results arc normalized to be in the range from -re  
to re. Now formula (9) can be used to determine 
q)(h)- ~z instead of q)(h). 

Selection of basis set 

Various procedures for selecting basis sets have been 
described by inter alios Karle & Karle (1966), Haupt- 
man, Fisher & Hancock (1969) and Germain, Main & 
Woolfson (1970). The alternative computerized pro- 
cedure described here, based on an analysis of the 
results obtained during a simulated phasing process 
without the use of any explicit phase values, was written 
to select a small but efficient basis set. 

First, for every reflexion the number of triple phase 
relations ('frequency') and the sum of the correspon- 
ding estimated reciprocals of the variances, 1IV's, is 
determined and filed. From this file the first origin- 
specifying reflexion is selected, following the general 
rules given by Hauptman & Karle (1956) and Karle 
& Hauptman (1961). The criterion used for selecting 
a reflexion is that it should enter into as many reliable 
triple relations as possible, viz. have high values of 
'frequency' and sum of 1/V's. This reflexion is now 
considered to have a 'known' phase, and will thus yield 
a large number of phase.relations containing two in- 
stead of three 'unknowns' ,  which will be termed double 
relations. The distribution for the reflexions of fre- 
quency and sum of 1/V's in both triple and double 
relations is calculated. For a structure with a primitive 
unit cell having orthorhombic or lower symmetry as 
an example, two additional origin-defining reflexions 
are required. These are selected one at a time from the 
reflexions currently having high values of frequency 
and sum of 1/V's in triple relations. Thus, the origin 
is defined by the use of reflexions involved in as many 

Table 2. Sign shifts of  the real (A) and imaginary (B) parts of  structure factors, caused by 
origin shifts (A) and by origin shifts together with inversion (i) 

A ggg ggu gttg 
(0,0,0) A, B A, B A, B 
(0, O, ½) A, B - A ,  - B  A, B 
(0, ½, O) A, B A, B - A ,  - B  
(½, O, O) A, B A, B A, B 
(0, ½, ½) A, B --A,  - -B  - A ,  - B  
(L o, ½) A, B -A ,  - B  A, B 
(½, ½, O) A, B A, B - A ,  - B  
(½, ½, ½) A, B --A,  - -B  - A ,  - B  

(0,0, 0)+i A, - B  A, - B  A, - B  
(0, 0, ½-)+i A, - B  -A,  B A, - B  
(0, ½, 0)+i A, - B  A, - B  -A,  B 
(½, 0, 0)+i A, --B A, - B  A, - B  
(0, ½, ¼)+i A, - B  - A ,  B -A ,  B 
(½, 0, ½)+i A, --B --A, B A, - B  
(½, ~, 0)+i A, - B  A, - B  -A,  B 
([, ½, ½)+i A, --B --A, B --A, B 

Parity group: 
ugg 

A, B 
A, B 
A, B 

- -A,  - -B  
A, B 

- A ,  - B  
- A ,  - B  
- -A,  - -B  

guu ugu uug uuu 

A, B A, B A, B A, B 
- A ,  - B  --A, - B  A, B - A ,  - B  
- A ,  --B A, B --A, --B --A, - B  

A, B - A ,  - -B  - A ,  - -B  - A ,  - -B  
A, B - A ,  - B  - A ,  - B  A, B 

- A ,  - B  A, B - A ,  --B A, B 
- A ,  - B  - A ,  - B  A, B A, B 

A, B A, B A, B -- A, -- B 

A~ - B  
A, - B  
A , - B  

- A ,  B 
A, - -B  

- A ,  B 
- , 4 ,  B 
- -A,  B 

A, - B  A, - B  A, - B  A, - B  
- A ,  B - A ,  B A, - B  - A ,  B 
- A ,  B A, --B - A ,  B - A ,  B 

A, --B - A ,  B - A ,  B - A ,  B 
A, - B  - A ,  B - A ,  B A, - B  

- A ,  B A, - B  - A ,  B A, - B  
--A,  B - A ,  B A, - -B  A, - B  

A, --B A, --B A, --B --A, B 

A C 28A - 1" 
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different reliable triple relations as possible, so as to 
give a large number of relations involving two 'un- 
knowns' (double relations). The number of relations 
involving one 'unknown' (single relations) will be very 
small at this stage. 

Any other reflexions having known phases, e.g.  from 
Y.1 relations, are now introduced, the distributions are 
reanalysed, and an enantiomorph determining reflexion 
is selected from the reflexions having the highest values 
of frequency and sum of 1 / V ' s  in double relations. 
Then the distribution analysis is repeated. The selected 
enantiomorph-defining reflexion will, as it enters into 
several double relations, produce a number of single 
relations. 

The distribution of the reflexions in single relations 
is now examined and those reflexions having the sums 
of 1 / V ' s  in single relations above a given limit are 
considered as 'known'. These reflexions are now used 
to further simplify the equation system by producing 
new double and single relations from triple and double 
relations respectively. These operations constitute one 
cycle of a cyclic procedure which is repeated until no 
new single relations are produced. The reflexion having 
the highest values of frequency and sum of 1/V's in 
double relations in the first few cycles is selected and 
considered as a variable to be added to the basis set. 
This reflexion is used to reduce the system of phase 
relations through application of the cyclic procedure 
described above. As many such variables are selected 
one at a time as are needed to yield single relations for 
most of the reflexions within five cycles. 

Thus, the basis set selected by this simply programm- 
able procedure yields as many new single relations as 
possible directly from the basis set, and most of the 
remaining reflexions will occur in single relations within 
a few cycles. This last property reduces both the pro- 
pagation of errors and computer time. 

Space group symmetry restrictions can be used to 
reduce the number of alternative solutions. Further- 
more, relations containing two unknown but restricted 
phase values and an unknown general phase yield, for 
orthorhombic or lower symmetry, the absolute value of 
the latter, modulo zr, by the use of formula (6), since each 
restricted contributor qg(kr)+~0(h-kr) is known to be 
0 or 1r/2, modulo re. The same kind of information is 
obtained in a more general way from the 'squared 
tangent formula' (Hauptman, 1970). 

When reflexions of unknown general phase are in- 
cluded in the basis set to specify origin or enantio- 
morph, tables such as Table 2 are convenient to facili- 
tate specification of the ranges to be investigated for 
these phases. If proper rows and columns of Table 2 
are deleted, tables for various centred cells are easily 
obtained; the permitted equivalent origins for C-cen- 
tred cells of crystal class {222) for example, are 0,0,0, 
0,½,0, ½,0,½ and 0,0,½. For primitive cells of crytals 
class {222} one finds from Table 2 that, if two reflexions 
from the parity groups g g u  and gug  are assigned phase 
value 0 for origin specification, the necessary third 

reflexion must distinguish between the origins 0,0,0 
and ½,0,0, and thus must belong to parity groups ugg,  
ugu,  uug  or uuu.  Let it be chosen from parity group ugg 
and assigned as an example the phase 1r/2. A fourth 
reflexion is then necessary to specify the enantiomorph, 
since a shift of 3, 0, 0 and a subsequent inversion causes 
no changes of the phases of the three chosen reflexions. 
From Table 2 we obtain the following restrictions on 
the ranges of the phase values, for reflexions of the 
eight different parities, that must be fulfilled if the 
enantiomorph is to be determined: 
0 < q~(ggg) < re, 0 < ~o(ggu) < re, 0 < q~(gug) < zr, - re~2 < 
~o(ugg) < rc/2, 0 < ~o(guu) < zr, - rc/2 < qg(ugu) < rc/2, - rc/2 
< ~o(uug) < re/2 and - 1r/2 < ~o(uuu) < re~2. 

Description of phasing procedure 

The procedures discussed above have been program- 
med in basic F O R T R A N  IV as an integrated set of 
programs, to fit into the 14 K 16-bit words available 
for background calculations in our IBM 1800 com- 
puter. 

The first program of the set generates triple relations 
with estimated variances and symmetry-imposed phase 
restrictions, from input of I EI values, unit cell com- 
position, and equivalent positions. 

The second program facilitates the selection of the 
basis set which yields the most single indications within 
a minimum number of phasing cycles (cf .  previous 
paragraph). 

The third program solves the variance-weighted 
linear phase relations [cf. formula (7)] from an input 
basis set. The strategy used in this program is simi- 
lar to that which proved successful in a previous pro- 
gram (Norrestam, 1971) limited to centrosymmetric 
structures. The input basis set is used to initialize the 
phasing. New phases are approved if their e.s.d.'s are 
below re/4 radians. From this preliminary set of phases 

I.n K 

-1 

-2 

Fig. 1. Plot of In K versus (sin0/;L)2 together with the least- 
squares line, for 4a-allyl-3,5,7,8,10-pentamethyl-4a,5-dihy- 
droisoalloxazine. K was evaluated as (~. fZ)/(lFlZobs) for 
sin 0 intervals containing equal numbers (80) of reflexions. 
The curve joining the points was plotted from a second- 
order Lagrange interpolation using Aitkens's method. 
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for the reflexions, an expansion of the basis set is per- 
formed stepwise to reduce the propagation of errors. 
Only those phases having e.s.d.'s below n/6 and multi- 
plicities [p in formula (9)] greater than or equal to a 
given number q in the previous step, are added to the 
basis set. The extended basis set thus obtained is then 
used to solve the triple relations once mere. New 
phases obtained during this phasing procedure are 
approved only if their e.s.d.'s are below hi6 radians 
and if they have multiplicities greater than or equal to 
q. When no more new phases are approved, the value 
of q is decreased, a new, more extensive basis set is 
formed and the above procedure is repeated. Usually 
three iterations, with q equal to 4, 3 and 2, have been 
performed. Finally the phases are refined for two cycles 
with formula (9), one reflexion at a time. For a given 
reflexion, all phase indications are used which arise from 
reflexions whose phases currently have e.s.d.'s below 
n/6 radians and multiplicities greater than 2. 

Four different figures of merit are evaluated to faci- 
litate the choice of the best solution, viz. the number of 
phases determined with e.s.d.'s below n/6, the number 
of triple relations having phase sums (calculated from 
the predicted phases) between - n / 6  and n/6, the r.m.s. 
deviation of the phase sums from zero, and the peak 
height at the origin ~ ]Et[ cos tp~ (where ~0i is the pre- 

i 
dicted phase for reflexion number i). Thus, high values 
for the first two figures of merit and low values for the 
last two are expected for the best solutions. 

Applications 

The procedures described above have been used at our 
Institute to solve twelve unknown noncentrosymmetric 
crystal structures, whose sizes range from small in- 
organics such as copper(II)molybdate. Cu3Mo209 
(Kihlborg, Norrestam & Olivecrona, 1971) to fairly 
complex organic structures such as the cyclic hexapep- 
tide ferrichrysin and the antibiotic oligomycin (von 
Glehn, Norrestam, Kierkegaard, Maron & Ernster, 
1972). The composition of the asymmetric unit for 
ferrichrysin is C29H48FeN9015 , while oligomycin B 
has an asymmetric unit of 60 non-hydrogen atoms, with 
a probable composition, indicated by the X-ray struc- 
ture, of about C47H76013. The remaining 9 structures 
have asymmetric units of 15-25 non-hydrogen atoms 
(see e.g. Norrestam, 1972). 

For the moderately complex structures, about ten 
times as many high ]EI values as there are non-hydrogen 
atoms in the asymmetric unit have been used to gen- 
erate triple relations. Usually the lower limit of the 
allowed e.s.d.'s of the triple relations has been set to 
yield about 4-5 times as many relations as the number 
of ]El values used. Thus, the average number of terms 
used in the summations in formula (9) has been 
about 12-15. 

The average deviations between the generated phases 
and those calculated after the completion of the struc- 
ture determinations have been in the range 8-15 ° for 

the 'equal atom' cases. The average deviations, with 
symmetry-restricted phase values omitted, have been 
in the range 10-20 °. However, for the structure of 4a- 
allyl-3,5,7,8,10-pentamethyl-4a,5-dihydroisoalloxazine 
(C18H22N402) (Norrestam, 1972), somewhat higher 
average deviations were obtained, plausibly attribu- 
table to extensive vector overlap in Patterson space 
(see e.g. Halaptman, 1964) arising from the roughly 
planar molecules formed of hexagons. This vector 
overlap is also indicated in the Wilson plot, Fig. l, by 
the prominent peak corresponding to an interatomic 
separation of 1-4-1-5 ]t. For this structure both the 
usual weighted sum formula (4) and the modified 
variance-weighted sum formula (9) were used to refine 
phases. The average deviations obtained (symmetry- 
restricted phase values omitted) of 31 and 23 ° respec- 
tively, show that the latter weighting [formula (7)] 
produces significantly improved phase estimates. 

In the first attempts to solve the oligomycin B struc- 
ture (space group P2,2121), the basis sets were selected 
by conventional manual techniques. Although the basis 
sets seemed to yield satisfactory solutions of the phase- 
relations, the calculated E maps were discouraging in 
that they showed no recognizable partial structures. 
Furthermore, the number of alternative solutions was 
overwhelming since the basis sets included several 
reflexions with unrestricted phase values. Use of the 
stepwise procedure described above to select an ef- 
ficient basis set enabled a choice of starting reflexions 
(all having symmetry-restricted phase values) for which 
the number of alternative solutions was reduced to 
four. The figures of merit obtained for the different 
solutions clearly revealed the best solution. Two conse- 
cutive phase refinements incorporating partial struc- 
ture information, subsequent difference electron-den- 
sity maps and least-squares refinements yielded the 
complete structure. A more detailed description of the 
structure determination is given elsewhere (Norrestam 
& yon Glehn, 1972). It is notable that although the 
asymmetric unit of this structure contained 60 non- 
hydrogen atoms, the 290 highest I E[ values, and the 
1500 best triple relations among them, sufficed. 

In determining the structure of a photolysis product 
(space group P212,21) by direct methods, Karle, Karle 
& Estlin (1967) encountered difficulties arising from 
bad phase estimates for some reflexions. Using their 
data, the author used the 100 highest IE[ values to gen- 
erate 556 phase relations. With a basis set selected as 
above, four alternative solutions were obtained. For 
the best solution, and the 90 reflexions having e.s.d.'s 
below re~6 radians, the average deviation of the gen- 
erated phases from the final calculated ones was 15 ° 
when using formula (4), and 12 ° with formulae (7) 
and (9). 

No more than four alternative solutions have been 
generated for the structures dealt with so far, when the 
basis sets were selected as described above. The best 
solution has always been one of the alternatives having 
the best figures of merit, 
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The non-integral value for the half period, . ~ (M< M <  M +  1, M:integer), as experimentally found in 
one-dimensional anti-phase domain structures, is explained by a disordered structure consisting of a 
mixture of two kinds of structure units with thicknesses of M and M +  1 layers. The diffraction intensity 
for the disordered structure is calculated by the use of  the general diffraction theory for a one-dimen- 
sionally disordered crystal given by Kakinoki & Komura [Acta Cryst. (1965), 19, 137]. With this model 
the non-integral value of the half period, 37/, can be explained as due to the shift between two peaks, one 
due to a simple APD (anti-phase domain) structure with half period, M, and the other to another 
simple APD structure with half period, M +  1. It is not necessary to consider a very large value of the 
period as was required in Fujiwara's model [Fujiwara, J. Phys. Soe. Japan (1957), 12, 7], which was 
proposed assuming a disordered structure, deviating from the standard structure defined by a step 
function. 

I. Introduct ion 

In some examples of one-dimensional  anti-phase 
domain  structures with an out-of-step vector u =  
(a+b) /2 ,  the ha l f  period, !Q, has experimentally been 
found to be non-integral,  as shown in Table 1. Fuji- 
wara (1957) explained this by assuming a disordered 
structure deviating from a standard structure which is 
defined by the use of a step function. The interpreta- 
tion of the non-integral structure and the relevant 
intensity equations were discussed in detail in part II of  
this series (Kakinoki  & Minagawa, 1972). In Fuji- 

wara 's  interpretation, however, the period P of  the 
standard structure should be subject to the relation 

P = Z v M  (1) 

where v is the m i n i m u m  positive integer to make 2vh~r 
equal to an integer P [refer to equation (F-4)'t- ]. 
Therefore, if we put 

A I = M + A M  with 0 < A M < I  (2) 

where M is an integer, then we have to assume a very 
high value of P, e.g., P =  321 for )14= 3.21 ( M =  3, 

* Present address: Department of Physics, Osaka Kyoiku t Equation (F-4) means equation (4) in Fujiwara's (1957) 
University, Tennoji, Osaka, Japan. paper. 


